NOTATION

T is the temperature, °K;

€ is the net emissivity (degree of blackness);

D is the cylinder diameter;

ik is the mean angular coefficient of radiation (ARC) between i-th and k-th elements of finite area
surface;

R " is the coefficient of reflection;

o is the Stefan—Boltzmann constant;

¢ is the dimensionless parameter equal to the ratio of the diameter of coaxial cylinders;

B is the ratio of the total area of perforations to the geometric area of the cylinder;

Bmax is the B value at which radiant energy from the surface is maximum;

By B is the value below which radiant energy of the perforated cylinder is equal to or greater than the
radiant energy of the continuous cylinder;

Qf is the resultant radiation flux,
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EFFECT OF THE ELASTIC FACTOR ON THE
HYDRODYNAMIC STABILITY OF A
STRUCTURALLY VISCOUS MEDIUM

L. I. Ionochkina, A. S, Romanov, UDC 532,135
and S. L. Simkhovich

The effect of relaxation phenomena on the hydrodynamic stability of the plane gradient flow
of a structurally viscous medium is investigated using linear theory.

There has recently been interest in various problems of the hydrodynamics of structurally viscous
liquids [1, 2] due to the wide use of these media in modern technological processes. These media have a com-
plex physicochemical structure which leads to the appearance of relaxational mechanical properties in addition
to Newtonian properties.

The simplest rheological law that simultaneously takes into account the relaxational and Newtonian prop-
erties of structurally viscous media can be postulated, e.g., in the form
1 0

~E—Tij:=21’](€2)F,~j, Q:V2FijFij . (1)

1.
ij
T

M

Here T is the characteristic relaxation time (the " Maxwellian" time); (%), apparent viscosity, which is dif-
ferent indifferent intervals of the variation of the intensity of the velocity deformation tensor Q [3]. If Q= Q4 (24 is a
characteristic of the medium), then () = n* + 1/Q, n* is the plastic dynamic viscosity, and 7, is the limiting
shear stress. When @ < Qy, 1(2) depends monotonically on  within the limits 7(0) = n (2 =n(Q), and () »
n*.

The motion of an incompressible structurally viscous medium can be described by the following system
of equations of motion:

au, d ép . 4 oU;
- - U, U= — 2 T Tijs =0, 2)
ot Ox; 0x; 0x; dx;

where Tij is given by Eq. (1).
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If the characteristic intensity of the rate of deformation Qchar > 4, the velocity field for steady-state
motion of the liquid (1) in a plane channel acted upon by a longitudinal pressure gradient is identical, apart
from terms on the order of 21/Qhay « 1, with the velocity field of a viscous-plastic liquid [4)

(I =8P —(lyl =87 for E<iy!i< 1.

Here we have taken as the characteristic quantities the half width of the channel L, the velocity V = — (3p/0x) x
(L%2n%, and the halfwidth of the extremely viscous zone § is found from its equilibrium condition

@

x L ¢4
2 Qchal) *

Below we consider the hydrodynamic stability of the flow (3) of the liquid (1) for infinitely small velocity
perturbations, the current function ¢ = $(x, y, t) of which has the form

Y (x, g, £) = ¢ (y) exp i (x —ct)). (5)

The dynamics of perturbations (5) are described by ordinary differential equations for amplitude ¢(y) -

(U oo — ) — U = — lf—l’“ff?a;f’)z [0 — 20"+ ') + 2mi (0" o) a6+ @P0) +
’ ﬂ 7 L2 ) IOy § 4 _i"l__ ,
Hu(5e), e ~w) | v % ) @ + o) ®)

and the boundary conditions [5]
¥ (=) =p(—1)=¢"(0) = ¢ (©0) = 0. M
Here the subscript 0 indicates unperturbed flow, n = 7(2)/n*, tp = Ty LV, 6 —arctan (actyy).

In the flow region |y| = £ with the accuracy assumed above, we can take U(y) = const. Hence, in this re-
gion assuming that Re » n(0)/7*, four linearly independent solutions of Eq. (6) can be defined in the form

P12 = exp(+ay) +0 (—l ) ,
a Re

Yy
e | - N 1 (8
¢s.«=exx>{:tv'aRe*5 l/ U—c [ oy (-9 dy}[l+0(—==)].
¥ ( Y| o _ do )0 V aRe
Re* = Reexp (i6) V'1 + (act, P -
In the region 1 = |y} = ¢ n =1 + ww (W= 3/Qchar), and Eq. (6) can be written [6]
(U —oXg"—ag) — U= — t(tv“’ — 202¢" + a'p) — 4 xa? ( L)] . ®
iaRe* v’
The solution of Eq. (8) can be written in the form
0f =N oy — 0" @ =aming—y) 4 Y by —y)
h=0 k=0
(10)
‘ N S I
¢r, = dz | ' *HY'SY [—(Lz) dz,
3.1 i\!ﬂ ‘}r 1.3 | 3 J
where
Uy = ¢ 2 -= (y — yo) [eRe VT (act U (y)1'° exp(i8;3), (1)

where —7%/6 < argz = 1/6 [5].

It follows from condition (11) that —n/2 =0 = 7/2, The corresponding interval of variation of tp is [—,

oo].
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Fig. 1. Curves of the neutral stability of the flow of a structurally vis-
cous liquid, For 6 =—37/20: 1){=0; 2) 0.3; 3) 0.6; for 6=0: 4) £=0; 5)
0.3; 6) 0.6; for #=31/20: 7) £=0; 8) 0.3; 9) £ =0.6.

Fig. 2. The critical Reynolds number (Refr)i/:’ as a function of the plas-
ticity parameter % for different 8. The numbers on the curves are the
values of 9,

The condition for the general solution of Eq. (6) to be nontrivial in the region of variation of the inde-
pendent variable y[~1, 0], defined by boundary conditions (7) and by the conditions for the general solutions
¢ and ¢* to be matched at the point y = —¢

dk¢
dy*t

drg*
(—8= Fr (=8 12)
apart from terms on the order of O[(@Re)~1/?], leads to the secular equation

(G2 (—=D 11 (— &) + 0 (—E) thak] — ¢y (—1) [ps (— &) -
-+ aqy (— &) thad}{e; (— 1) 9] (— &) + agy (— B thoad] — ¢ (— 1) x
X [5(—8) - oy (—8) th ak]y = @y (—1)¢] (— 1), (13)

In calculations using Eq. (13), the integration path when finding the solution @, is chosen along the real
axis 0z from +« to 0 and further along the ray argz = 7 + 6/3.

Figure 1 shows curves of the neutral stability Re = Re (o), Re = pU;Li/n*, L; = L(1 — §), Uy = V(1-§?,
oy = o:(l—&)'1 for different values of £ and 6 calculated from Eq. (13). The dependence of the critical Reynolds
number Recr = (0U;Ly/M®cr on the defining dimensionless parameters of the problem 6, % is shown in Fig. 2,

The above calculations show that the features of the mechanical behavior of structurally viscous media
have a considerable effect on the hydrodynamic stability of their flow. The plastic properties always stabilize
the motion. The part played by the relaxational properties of the medium is determined, as was shown by the
phase shift between the stresses and the rate of deformation. The time lag of the stresses (T > 0) leads to
destabilization of the motion — a reduction in the critical Reynolds numbers. Otherwise the motion is stabi-
lized.

NOTATION
Tij is the stress tensor deviator;
Ui are the components of the velocity vector;
Xi are the coordinates;
t is the time;
P is the pressure;
7 = T,L/*V is the plasticity parameter;
To is the limiting shear stress;
a and ac are the dimensionless wave number and the perturbation frequency;
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Re = pVL/n* is the Reynolds number;
o is the density;
Fij is the deformation rate tensor.
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VARIATION OF THE RHEOLOGICAL PROPERTIES OF
MULTIPHASE MIXTURES DURING THEIR
PRESSURE TREATMENT

B. M. Yakubov UDC 532,135

Nonequilibrium effects in the barotreatment of non-Newtonian multiphase systems are dis-
cussed,

It has been established by a large number of investigations that when non-Newtonian systems are pres-
sure-loaded under static conditions, one observes a slow pressure drop to some stabilized value [1].

These kinetic effects are observed under both static and dynamic conditions {2].

The "pressure-drop" effect was the basis for an examination of the possibility of regulating the rheo-
logical properties of non-Newtonian systems through their pressure treatment — barotreatment,

The effect of pressure on the properties of some non-Newtonian systems is discussed below. Proceeding
from fluid-transport problems, as the models of non-Newtonian systems we chose: 1) glycerin +quartz dust
(L0%); 2) glycerin +quartz dust (10%)+CO, gas (with gas—liquid ratios I" = 5, 10, and 25 cm®/cm®); 3) glycerin +
quartz sand with fraction of ¢ 0.25-0,75 mm,

The tests were conducted on a specially constructed installation whose main component is the pressure
chamber — an RUT cylinder (Fig. 1).

The first series of experiments was performed with a non-Newtonian system, a mixture of glycerin +
quartz dust (10%), which was carefully evacuated at T = 40°C before the start of a test,

The presence of a piston in the RUT cylinder, as is known, is associated with some "shear" forces on
the order of 1-1.5 atm (tech.) expended in the motion of the piston itself. In order to eliminate this effect,
the experiments were conducted inside a container.

The tests were conducted in the following way: excess pressure was produced in the container 2 (Fig. 1)
by depressing the piston with the press, and when the assigned pressure P; was reached the container was
disconnected from the RUT cylinder by the valve 9, with the loading of the system taking place in a relatively
short time. The time variation of the pressure was recorded with a standard manometer 6 with a scale division
of 0.2 atm (tech,).
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